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1. INTRODUCTION  

 Operational impacts of  Glen Canyon Dam on downstream resources of the Colorado River 
ecosystem have been the subject of intense study and discussions among adaptive management 
stakeholders that include Federal, State and tribal entities, as well as recreational businesses, 
environmentalists, power companies, and others  
( U.S. Bureau of Reclamation 1995, Schmidt et al. 1998).  The Grand Canyon Monitoring and Research 
Center (GCMRC within the U.S. Department of Interior) has identified the following key objectives for 
long-term monitoring of vital components of the ecosystem between Lakes Powell and Mead, while 
providing stakeholders with information for decision making: 1) lowest possible impact on critical 
resources; 2) highest possible return of integrated scientific information; and 3) long-term, repeatable 
data collection.  Airborne hyperspectral image data are being considered as a possible long-term 
monitoring tool, which hold the promise of being able to fulfill the above requirements.  The present 
study is a pilot project which is intended to explore the extent and variety of information, relevant for 
long-term monitoring, that can be extracted from images of both high spectral and spatial resolution.  

The Colorado River ecosystem in Glen Canyon and Grand Canyon poses special challenges for 
remote monitoring with respect to logistics required to support field-based studies and relative to spatial 
scales at which monitoring is needed. The narrow corridor of the river is confined by tall vertical cliffs, 
yet provides a habitat for a great variety of both native and non-native plant species.  Riparian vegetation 
consists of stands that often cover only very small areas.  Often, these stands consist of intermixed native 
and non-native species, and spectral signatures of the various plants sometimes display only subtle 
differences.  Adequate change detection mapping requires both high spectral and high spatial resolution, 
as well as advanced processing algorithms that can detect subtle spectral differences.   

Change detection for evolving sand bars, rapids and debris fans is a critical part of the GCMRC's 
long-term monitoring program.  Additionally, changes in the aquatic ecosystem's food base, such as 
abundance and distribution of algae and other benthic organisms are of great interest.  Presently, the need to 
lower river stage for 23 days during annual monitoring overflights for conventional aerial photography and 
traditional surface measurements introduces artificial and undesirable impacts on the ecosystem (e.g., Blinn 
et al. 1999).  With hyperspectral imagery, we expect to map riparian vegetation, terrestrial sediment 
deposits, as well as sand bars and benthic organisms through some depth of water, obtaining greater 
compositional information than can be obtained through the use of aerial photography. 



 
1. AVIRIS DATA AND PREPROCESSING  

Low altitude AVIRIS data were collected on October 4, 1998, in two runs. The data set comprises 
approximately 10 Gigabytes of data, divided into 10 image frames. These frames cover river miles –5.5 to 
–12.0, about 2.5% of the 300 miles long river corridor between Lake Powell and Lake Mead, and roughly 
8% of the GIS study sites monitored by the GCMRC (Figure 1). The frame considered in this paper 
contains river miles –5.5 to – 6.75, a portion of the river with a wide array of sediment and  bedrock types 
and various typical aquatic and riparian plant assemblages. The spatial resolution is approximately 2.7 
m/pixel. North is shown at approximately ten – o’clock, and the river flows top to bottom in the frame. All 
four spectrometers functioned properly during the October 4 data acquisition. On 21 and 22 August 1998, 
field spectra of over 70 soil, rock and vegetation species were collected with an ASD FieldSpec FR, in 
areas that fall within our AVIRISLA image frames.  A portion of these field spectra along with field photos 
of the respective species are posted at http://www.lpl.arizona.edu/~erzsebet/index.html , under 
“Ecosystem”.  

 

Figure 1.  GIS monitoring sites of the Grand Canyon Monitoring and Research Center 
(GCMRC), along the Colorado River in Grand Canyon. The AVIRISLA imagery collected in October, 
1998, coincides with GCMRC GIS Site #14.  Figure courtesy of GCMRC.  

The data received from the AVIRIS data lab had been geometrically rectified and registered 
(Boardman, 1999) and calibrated to at-sensor radiance.  The image data in this study were then converted to 
apparent surface reflectance through the use of the ATREM program (Gao et al., 1993).  In order to remove 
residual instrumental and atmospheric effects remaining after the ATREM correction, a second stage 
“modified flat field” (Farrand, 1992) correction was applied. This second stage correction consisted of the 



following steps: first, an average spectrum of three pixels covering a quartz sand bar that was visited during 
the August, 1998 field work was calculated.  This average ATREM corrected spectrum was divided into 
each pixel in the ATREM corrected data cube.  As part of the same mathematical operation, each pixel 
spectrum was multiplied through by a smoothed field spectrum of the sand bar. Further preprocessing 
included trimming off the no-data fringes, and elimination of the overlapping and excessively noisy bands, 
leaving 194 image bands. Before classification, a normalization  (as described in Merényi et al., 1996) was 
also applied in order to cancel linear (i.e.  terrain induced) shading effects. This treatment eliminates albedo 
differences; however, the benefits of normalization outweigh the disadvantages in most applications. 
 
3.  IMAGE ANALYSES AND RESULTS  

Two independent analyses were performed: supervised classification by an Artificial Neural Net 
and Spectral Mixture Analysis. These are presented in Figures 2 and 3, respectively. The results were 
evaluated against field data that the GCMRC has accumulated over 20 years, against field spectra that were 
collected in August, 1998, and against the field knowledge of co-authors LS and TM. They have up-to-
date, detailed knowledge of the spatial distribution of the resources mapped in this work, through their 
regular visits to the field (e.g., Stevens et al., 1995, 1997; Kaplinski et al., 1999).  

3.1 Artificial Neural Network Classification  

Supervised classification for 18 different surface covers was done using carefully selected training 
samples. The hybrid Artificial Neural Net (ANN) paradigm, which contains a Self-Organizing Map, is 
described in detail by Howell et al. (1994), Merényi et al. (1997), and Merényi (1998). For this task, 194 
input neurons (corresponding to the number of spectral channels), a 40 x 40 hidden Self-Organizing layer, 
and 18 output neurons (one for each class) were applied. ). The software used is a collection of NeuralWare 
(1993) based classifiers and Khoros (Rasure and Young, 1992) based data exploration and other supporting 
tools, developed for hyperspectral imagery in-house at LPL, University of Arizona. The classes for which 
to train were determined on the basis of spectral variability found in the image. Identification of the spectral 
types (labeling the classes) was done by comparison to field spectra, and with the help of co-author LS. The 
resulting class map is shown in Figure 2.  Mean spectra of classes are in Figure 4.  

The greater surroundings of the river corridor in this section are dominated by red Navajo 
sandstone, which is mapped as class O and class N. Class O coincides with a nearly vertical cliff where 
dark MnO2  coating (“desert varnish”) is common. Shading is also  severe here due to the extreme 
geometry and it may cause as yet uninterpreted spectral effects.  Class Q appears to be red sandstone where 
strong leaching of iron oxides has occurred. White alluvial and eolian sand (class P) is present in small sand 
beaches along the river. White sand is also exposed in  the upper riparian zone (the “old high water line”, 
which was the 10 yr, pre-dam flood stage elevation), and it has been detected by this classification. The 
most obvious example is the nearly horizontal white linear feature toward the right side of the image, just 
above the bank at the inner curve of the river.  

The water in this image has two significantly different segments. Class M shows no spectral 
signature of sediments. The water here is deep and obscures the sediments. Moreover, the very tall cliffs 
cast shadows, even at local noon when this image was taken, and further degrade the spectra. These 
effects will have to be investigated and calibrated. The river segment downstream of class M (downstream 
of the sharp diagonal dividing line at the cliff’s base near the center of the image) is less deep with no 
shadows cast on it. In this part, clear signatures of fine sediments (mainly sand) have been detected 
through the water. We attempted to map submerged sediments in three broad categories here: sediments 
under “shallow” water, under “deeper” water, and in the “deepest” part of the water. Class J represents 
sand banks under very shallow water. Training samples for this class were taken from the “L” shaped 
large sand bank close to the white sand beach just downstream of the dividing line of class M (Figure 2c). 
Note that a very small sand bank close to shore, under shallow water, was detected in the “deep water” 
section close to the top of the image (Figure 2b). Classes K and L map submerged sediments under two 
additional, progressively deepening water levels.   

Algae-laden water, mapped as class I, corresponds well to known locations of shallow algal 



colonies, in distinct elongated patches along the shoreline.   

Seven vegetation species were included in this classification. Redbud (Cercis occidentalis), a 
native tree, which grows in protected crevices up in the cliffs and  away from the river (class F), and six 
riparian species. The latter are all represented on the sand beach in Figure 2b, which was one of the sites for 
our field work in August, 1998. Monitoring the spatial distribution of these species is an important concern 
as they make up the bulk of riparian habitat used by invertebrate and vertebrate fauna, and their distribution 
indicates or forecasts change in the ecosystem induced by variation in the flow regime or new (artificially 
introduced) components or by other factors (Stevens 1989). Tamarisk (Tamarix ramosissima), a 
widespread, non-native tree, is mapped as class A, and matches the known, relatively large plant stands in 
this image frame. Arrow weed (Tessaria sericea, class B), partially decayed in the fall, and “Mixed grass” 
(primarily Bromus spp. and Sporobolus spp., class E) were recognized and mapped based on their field 
spectra, and generally correspond to ground truth, showing along shorelines. Training samples for coyote 
willow (Salix exigua, C), watersedge (Carex aquatilis, D), and seep willow (Baccharis emoryi and B. 
salicifolia, G) were identified from the site of our field work  (Figure 2b) by our domain expert LS.  The 
seep willow (G, maroon) on a sand bar, wedged diagonally into the large, 50-60 m wide, tamarisk stand 
and flanked by grass and coyote willows, is perfectly mapped. There are, however, some false indications 
of seep willow, showing as a linear feature at the border of the vegetation patch and the red rocks. This is 
due to the lack of additional training classes for “other leafy” vegetation that occurs there, and which may 
be spectrally very similar to the seep willow. The main coyote willow stand just above the white sand 
beach in Figure 2b is mapped faithfully, with a little overclassification to the left of the sand. The 
watersedge colony (D, dark green) along a backwater is also faithfully mapped, with the exception of a four 
pixel large (yellow) patch that was mis-classified as arrow weed. (The rest of the yellow feature is indeed 
arrow weed.)  

One remaining vegetation class is a mixed one: grassy talus slope (H, orange), which shows at the 
right locations, from the border of vegetated patches up the slopes, more abundant in drainages than 
elsewhere. This class exhibits both rock and grass signature.  In addition, an “unknown” material was 
noticed (R, lilac), which is as yet unidentified. Several, spatially coherent, unclassified areas indicate that 
the classification can be refined to include more classes. Examples of this are the unclassified ring around 
the large L-shaped submerged sand bar (class J), which is probably lined with cobbles at the bottom; or the 
large unclassified spot on the outer bank at the bend of the river, which may be a plant or rock type, 
different enough spectrally that it was not assigned to any of the present classes. 

 
3.2 Endmember Determination and Mapping  

One of the processing approaches used on the AVIRIS scene considered here was an approach 
using processing tools resident in the ENVI software package (RSI, 1997).  The data were transformed 
using a Minimum Noise Fraction (MNF) transform.  A small number of endmembers were determined by 
examining two dimensional scatterplots in which the first several MNF bands were successively plotted 
against each other and pixels at the vertices of the observed data clouds were selected.  Using averages of 
these pixels, the data were reduced via Spectral Mixture Analysis (SMA) (Adams et al., 1993).  A good set 
of fraction images with a relatively bland RMS error image was derived using just three endmembers: a 
“white” (relatively ferric oxide free) rock, a “red” (ferric oxide – rich) rock, and green vegetation.  From 
the RMS error image, a number of spatially restricted materials were identified including white sand 
beaches and submerged sediments.  A region of interest (ROI) was defined by thresholding the vegetation 
fraction image.  The first six MNF bands were interactively examined using the ENVI n-dimensional 
visualization tool using the vegetation-rich pixels as the input ROI.  In this way, a number of distinct 
vegetation classes were identified.  Several of the more spectrally distinct vegetation classes along with the 
two rock endmembers and the “submerged sediments” and “white sand” materials (identified in the SMA 
RMS error image) were used as  the target materials for a Spectral Angle Mapper (SAM) classification 
which is presented here as Figure 3.  

The eight species mapped by SAM classification include three terrestrial vegetation types, three 
rock/soil types and two  “in-water”species.  Classes 1, 2 and 3 mostly match the coyote willow, arrow 
weed, and tamarisk, respectively, in  the ANN classification (Figure 2).  Classes 5, 6, and 7 are the same as 



classes O, N, and P in Figure  
1. 2. Class 3 appears to coincide with class R of the ANN map, and class 8 does not match any of the 
ANN classes.  
2. 4. SUMMARY AND FUTURE IMPROVEMENTS  
 

The remote sensing and analysis approaches used here show great promise for ecosystem 
monitoring in Grand Canyon, and elsewhere.  Further refinement of these techniques using existing 
imagery will provide a basis for expanding the scope of coverage to other GIS reaches, which are 
presently being monitored through costly, intrusive, on-the-ground approaches.  These techniques offer 
important new analytical tools for evaluating and monitoring other ecosystems, on earth and elsewhere.     

We mapped eight vegetation species, 5 “in-water” species such as algae plus submerged 
sediments, and four rock/soil types from a low-altitude AVIRIS image covering the –5.5 to –6.75 river 
miles of the Colorado River in Glen Canyon. The 2.7 m/px spatial resolution allowed very detailed 
mapping of plant stands that are important to distinguish and monitor, on the few meters scale. The 
presented analyses are in good agreement with ground truth.  

In this first attempt we achieved a goal of mapping underwater sediments, with a qualitative 
distinction among three levels of water covering the sediments. As resources allow, future work will 
include more gradations, and more quantitative assessment of water depth and distinguishing among 
sand, cobbles and other materials underwater.  

More vegetation species can be readily included in future classifications. For example, the 
pixels mis-classified for seep willow (G, maroon class) will be examined and made into one or more 
appropriate new classes. Similarly, the unclassified terrestrial patches will be evaluated and included as a 
refinement to the present classification. Then, the area coverage of each class will be calculated by 
multiplying the number of pixels in the class by 2.7 x 2.7 square meters.   

We plan to analyze three more AVIRISLA frames of the Glen Canyon reach, that will extend the 
mapping discussed here up to river mile –9.  With that we will have a significant statistical basis for the 
evaluation of the powers of high spatial resolution hyperspectral imaging as a  potential monitoring 
approach. In addition, resources permitting,  imagery in a downstream reach (river mile +7.9) will be 
evaluated for terrestrial features with coarse sediment textures, such as debris fans and rapids.  
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Figure 2. (upper half of page) a) Left: 
Artificial Neural Network classification. U – Unclassified ; A – Tamarisk; B – Arrow weed, partially 



decayed; C – Coyote willow; D – Watersedge; E – Mixed grass, green and dry; F – redbud tree; G – Seep 
willow on sand ridge; H – Grassy talus slope; I – Algae-laden water; J – Submerged sediments 1; K – 
Submerged sediments 2; L – Submerged  sediments 3; M – Deep water and/or very dark shadow, no 
sediments seen; N – Red sand; O – Red Navaho sandstone; P – White sand; Q – Bluff colored Navajo 
sandstone; R – Unknown; b) Top right: Enlargement of the upper boxed area in a). c) Bottom right: 
Enlargement of the lower boxed area in a).  

Figure 3.  (left) Spectral Angle Mapper classification of endmembers determined from Spectral Mixture 
Analysis.  1 – vegetation 1; 2 – vegetation 2; 3 – in-water vegetation; 4 – vegetation 3; 5 – bluff colored 
Navajo sandstone; 6 – red colored Navajo sandstone; 7 – white sand beach; 8 – submerged sediments.  

 

 

Figure 4. Representative spectra of the species mapped by Artificial Neural Net classification in Figure 2. 



a)  (upper left) Spectra of rocks and soils; b) (upper right) Spectra of “in-water” species; c) (left) Spectra of 
vegetation species. 

 
 


